

Item No.: 5B_Supp Date of Meeting: April 3, 2018

2016 Puget Sound **Maritime Emission** Inventory; 2016 NWSA Greenhouse Gas Inventory; and NWSA Greenhouse **Gas Glidepath**

Maritime Emissions Regional Context

Diesel Particulate Matter

3/29/2018

Summary and Highlights

- Results of the Puget Sound Maritime Air Emissions Inventory (PSEI) showed that NWSA and regional maritime emissions decreased significantly for all pollutants.
 - DPM down 80% and GHG down 17% per ton of cargo since 2005
 - Achieves 2020 reduction targets for NWPCAS
- Results of the NWSA 2016 Greenhouse Gas Inventory indicate that mobile sources make up over 98% of total GHG Emissions
- NWSA GHG Glidepath shows that GHG Resolution targets require significant decreases in carbon intensity across operations
- Upcoming clean air programs:
 - Shore Power
 - 33% of ships calling are shore power capable (Starcrest, 2016)
 - Clean Cargo Handling Equipment
 - 39% meet tier 4i (2016 NWPCAS implementation report)
 - Clean Trucks
 - 53% meeting 2007 EPA emission standards (as of Dec 31 2017)

Importance of Emissions Inventories

- Data collection is the starting place for air quality programs
 - Can't manage what you don't measure
- Demonstrates our commitment to transparency
- Tracks progress towards goals
- Helps prioritize emission reduction programs and policies
 - Allows emission reductions, environmental benefits, and societal benefits to be weighed against cost
 - Identifies areas where emissions are greatest and where they are easiest to control

Analytical Method of Emissions Inventories

- Activity Based: Calculate emissions based on recorded and estimated "activity levels"
 - Use surveys and vessel, vehicle, and equipment records to determine activity levels
 - Type of equipment (e.g., top pick)
 - Intensity of operation (average horsepower)
 - Duration of operation (hours)
- Emission factor translates activity level to emissions
 - Emissions per activity
- Emissions = A [hp-hr] x EF [grams/hp-hr]

Puget Sound Maritime Air Forum

The Air Forum is a partnership between Ports, government agencies, and industrial partners.


- The Northwest Seaport Alliance
- Port of Anacortes
- Port of Everett
- Port of Olympia
- Port of Port Angeles
- Port of Tacoma
- Port of Seattle
- Northwest Clean Air Agency
- Puget Sound Clean Air Agency
- Puget Sound Regional Council

- U.S. Environmental Protection Agency (EPA)
- Washington State Department of Ecology
- Washington State Department of Transportation
- North West and Canada Cruise Association
- Pacific Merchant Shipping Association
- Western States Petroleum Association

Geographical Extent

- U.S. Portion of the Puget Sound/ Georgia Basin Airshed (we'll call this the Puget Sound Airshed)
 - From the Cascade to the Olympic Mountains and from Olympia to the Canadian border
- NWSA Emission Scale
 - We focus on "Airshed scale" emissions
 - Includes all truck, train, OGV, and harbor craft emissions on and off port within the Airshed boundary
- Maritime Industry-Wide Emissions
 - Emissions from all maritime related activity within the Airshed boundaries (not just NWSA)

Source Categories

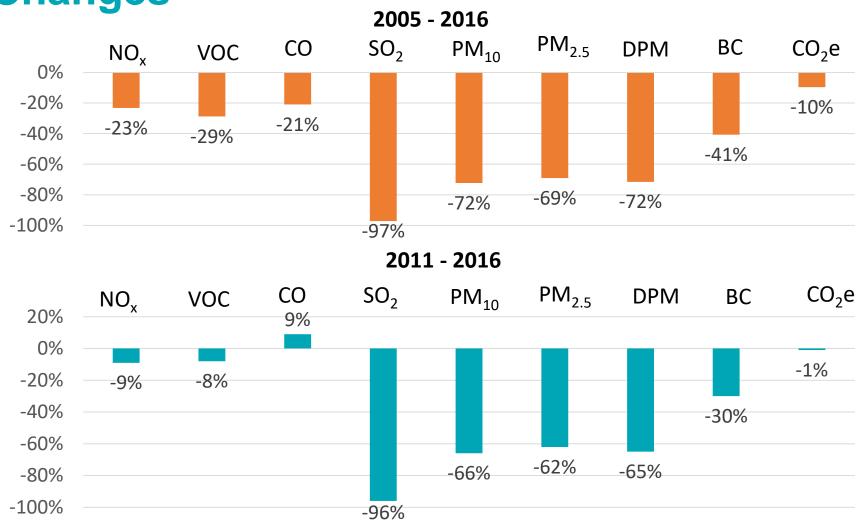
- Ocean Going Vessels (OGV)
- Cargo Handling Equipment (CHE)
- Locomotives
- Harbor Vessels
- Trucks
- Fleet Vehicles

Pollutants Inventoried

Criteria Air Pollutants

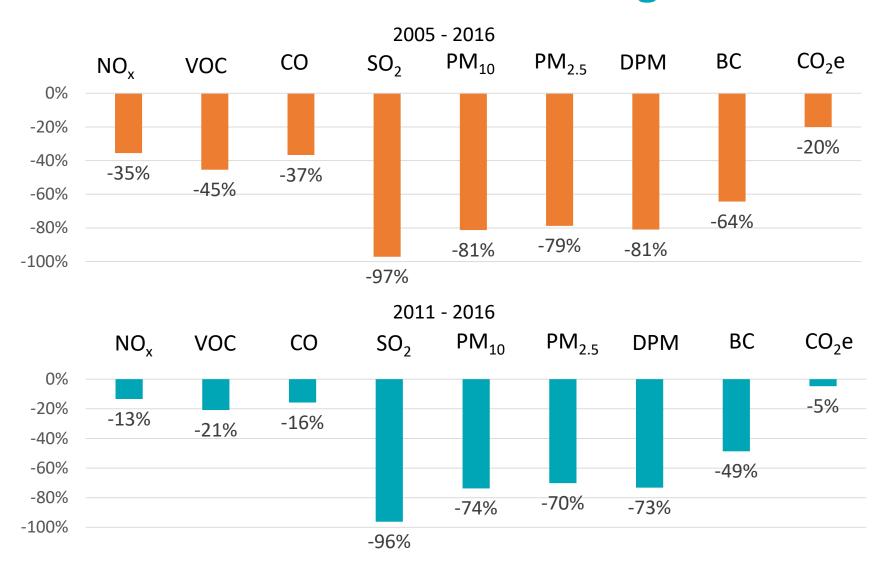
- Particulate Matter (PM)
 - Fine PM (PM_{2.5})
 - Coarse PM (PM₁₀)
 - Diesel PM (DPM)
- Sulfur Dioxide (SO₂)
- Nitrogen Oxides (NO_x)
- Carbon Monoxide (CO)
- Volatile Organic Compounds (VOCs)

Greenhouse Gasses (GHG)

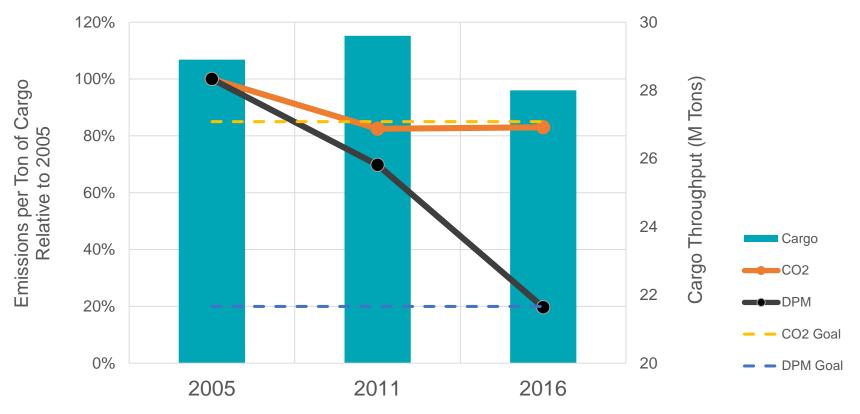

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- Nitrous Oxide (N₂O)
- GHG are reported together in CO₂ equivalents (CO₂e)

Other

- Black Carbon (soot)
 - Part of PM_{2.5}
 - Climate forcer

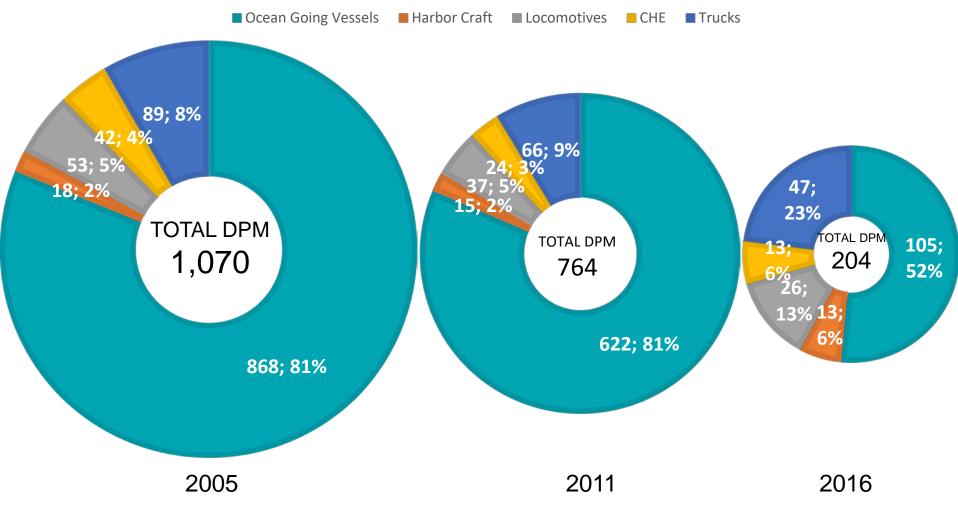


Maritime Industry-Wide Airshed Emission Changes

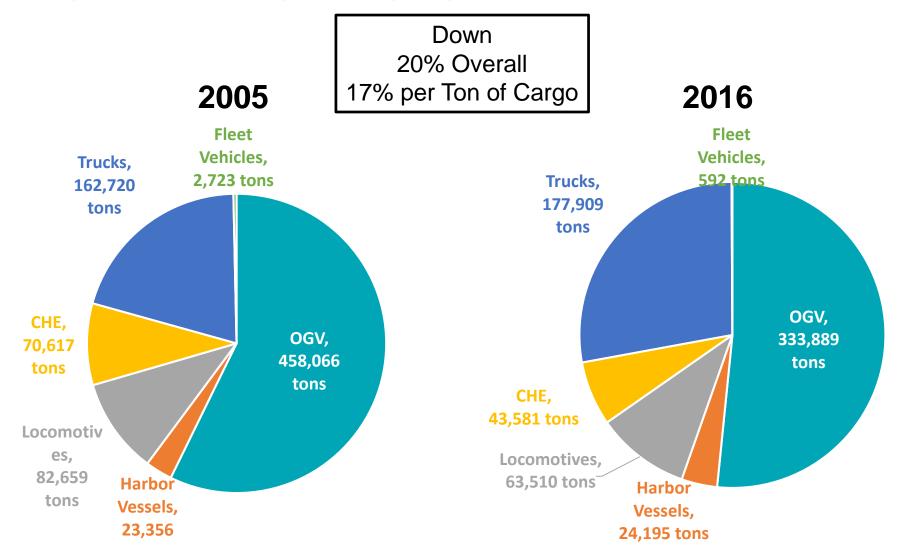


NWSA Airshed Emission Changes

Summary of Progress Towards NWPCAS Goals

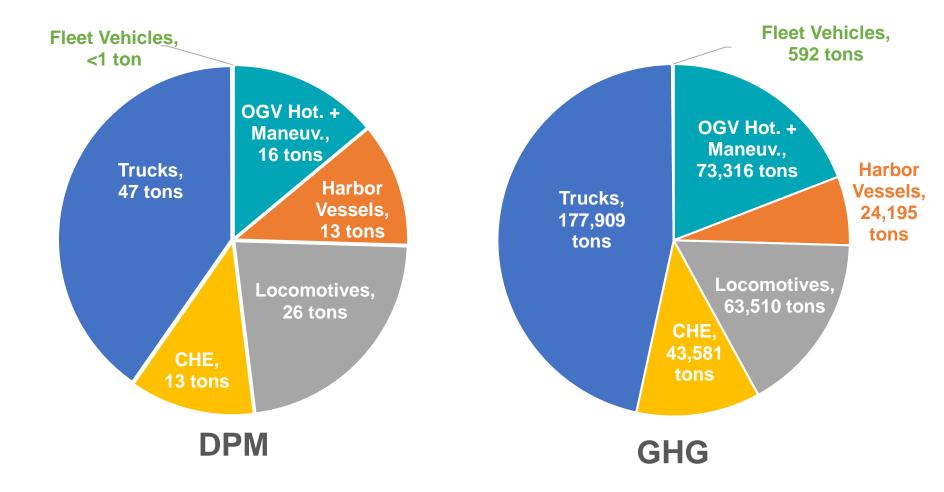


- Northwest Ports Clean Air Strategy (NWPCAS) goals are 15% reduction of CO₂e and 80% of DPM emissions per ton relative to 2005 levels of cargo by 2020.
- NWSA achieved <u>17%</u> and <u>80%</u> reductions for CO₂e and DPM respectively on airshed scale. <u>Met goals 4 years ahead of schedule</u>.


NWSA Airshed DPM Emissions

DPM EMISSIONS IN TONS/YEAR AND % OF TOTAL

NWSA Airshed Scale GHG Emissions Distribution



Reasons for NWSA Emission Changes

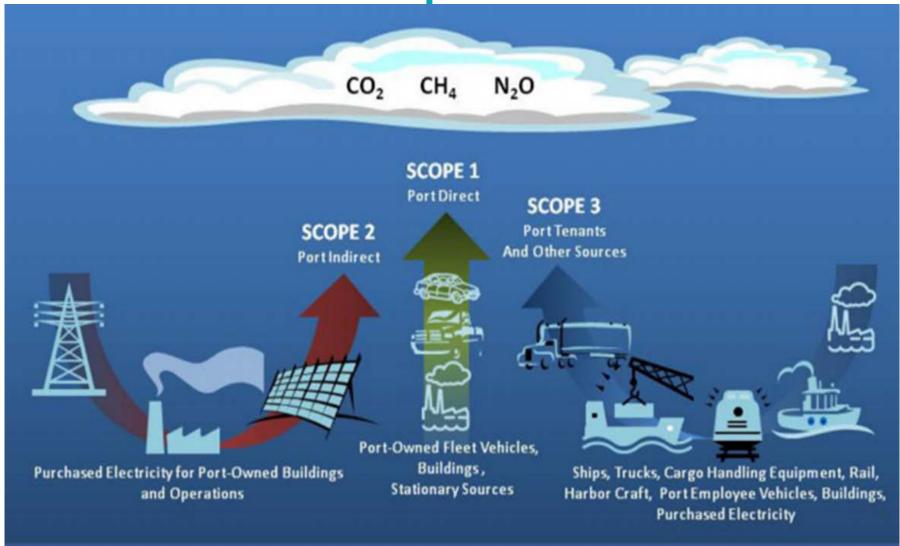
- ECA: Fuel switched from bunker fuel (max 3.5% Sulphur) to low sulfur fuel oil (maximum 0.1% Sulphur)
 - Model fuel correction factors indicate: reduces vessel emissions of DPM by 83%, SO₂ by 97%, NO_x by 6%, and CO₂ by 5%.
- Use of ULSD in equipment, harbor vessels, and trucks
 - Nonroad, locomotive, and marine fuel:
 - Pre 2007: unregulated
 - 2007 2014: Low sulphur diesel (500 ppm S)
 - 2014 ULSD (15 ppm S)
 - On-road (trucks)
 - Pre 2006 : Low sulphur diesel (500 ppm S)
 - 2010: ULSD (15 ppm S)
- Fleet turnover, stricter controls on PM, NO_x, VOC
 - 2007 newer truck PM 90% lower than pre 2007
 - 2010 newer truck NO_x 95% lower than pre 2010
 - Tier 4 equipment PM and NO_x 90% lower than tier 3
- Lower activity for locomotives, CHE, OGV

2016 Near Shore Emission Distributions

Greenhouse Gas Inventory: Greenhouse Gas Resolution

GHG Reduction Resolution:

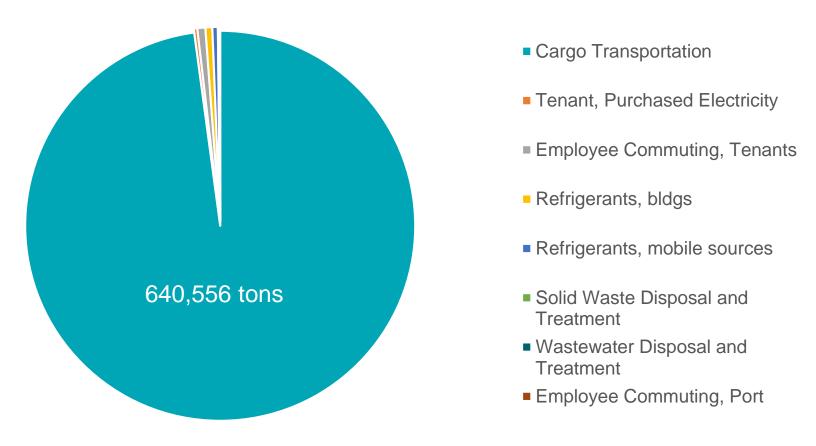
By 2030:


50% below 2005 levels (scopes 1, 2 & 3 emissions)

By 2050:

- Carbon Neutral (scopes 1 & 2 emissions)
- 80% below 2005 levels (scope 3 emissions)
- Why Perform another inventory?
 - Fills in the gaps left by the PSEI, e.g. stationary sources
 - Assess strategies for meeting NWSA GHG Reduction Resolution

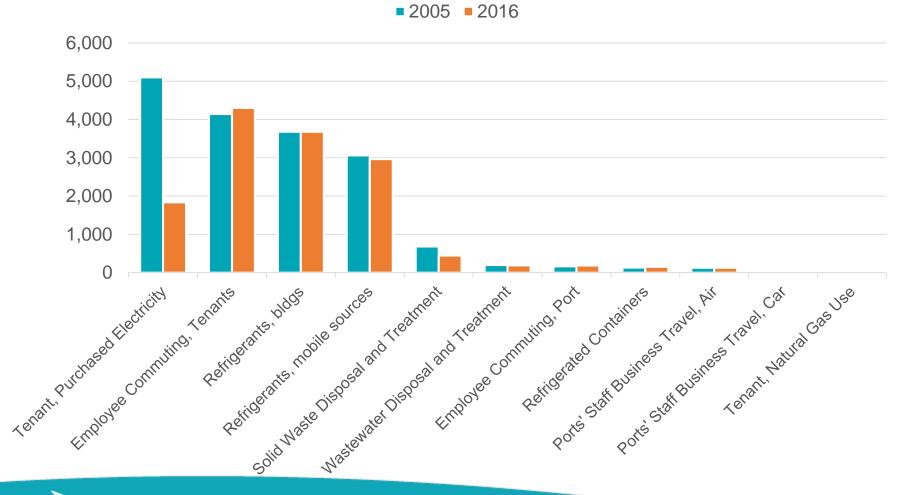
GHG Emission Scopes


NWSA 2016 GHG Emissions Inventory Results

GHG Emissions (Tons CO ₂ e)					
Emissions Scope	Source	2005	2016		
Scope 1	None	NA	NA		
Scope 2	None	NA	NA		

NWSA 2016 GHG Emissions Inventory Results

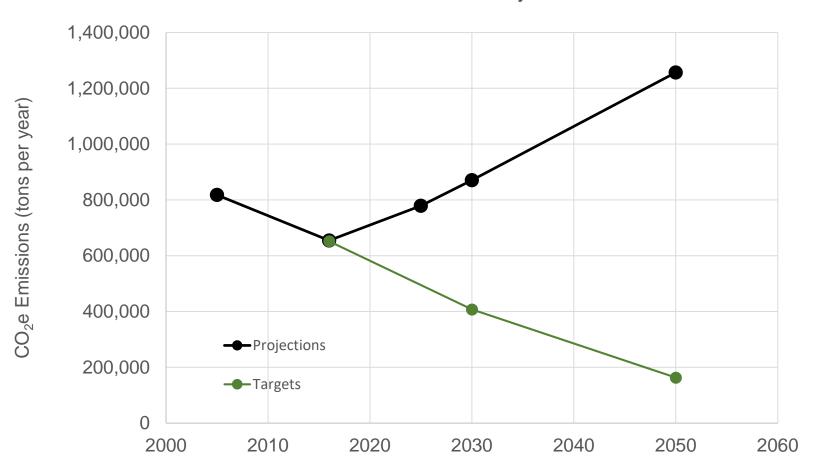
2016 Scope 3 Emissions, tons

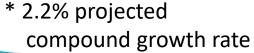


* Total: 654,518 tons

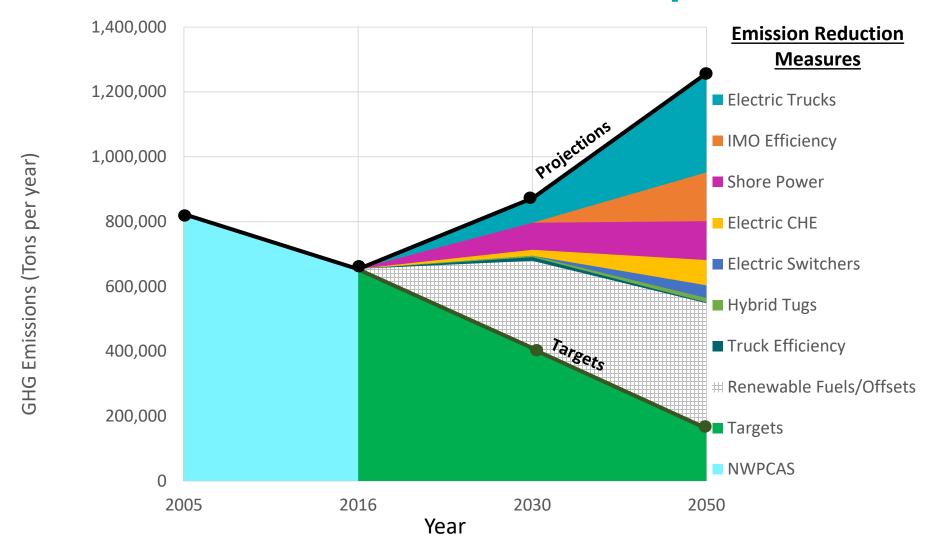
NWSA 2016 GHG Emissions Inventory Results

2016 Scope 3 Emissions, tons


Background – Why this is important Greenhouse Gas Reduction Resolution


- Scientific consensus is climate change is already happening
- Paris Agreement:
 - Countries aim to keep global temperature rise to below 2 degrees
 Celsius above pre-industrial levels
 - POT and POS have joined national 'We Are Still In' coalition in June 2017
- POT and POS early leaders by adopting GHG reduction goals in Northwest Ports Clean Air Strategy in 2008
- Public opinion 71% Pierce Co. and 81% King Co. residents think global warming is happening, majority think caused by human activity

Emission Projections


NWSA GHG Emission Projections

GHG Emission Reduction Glidepath

High Level Cost Estimates of Emission Reduction Programs

- High level estimates based on available information
 - Most estimates are very conservative based on their speculative nature
 - Costs were taken from previous work done by LA/LB and CARB
- Many factors play in to the actual future costs
 - Technology development and penetration of the market
 - Public Policy
 - Carbon tax
 - Global shore power requirements
 - Global fuel requirements
- Programs will be prioritized based on emission reductions required to meet targets, cost, and operational effectiveness

3/29/2018

2030 Emission Reduction Measures

Shore Power

All vessel calls

Shipside: \$511,500,000

Terminals: \$90,000,000

83,208 tons CO₂e/yr **Electric Trucks**

33% of fleet

\$197,505,000

74,395 tons CO₂e/yr Cargo Handling Equipment

33% Electric

Equipment: \$165,868,725

Infrastructure: \$257,519,559

17,967 tons CO₂e/yr Truck Efficiency Improvements

New fuel efficiency regulations

11,093 tons CO₂e/yr Hybrid Tug Assist Vessels

50% of fleet

\$20,000,000

4,827 tons CO_2e/yr

* Total Cost: \$1,242,393,284

2050 Emission Reduction Measures

Electric Trucks

90% of fleet

\$580,095,000

305,163 tons CO_2 e per year

IMO Efficiency Improvements

EEDI 30% improvement

150,090 tons CO₂e per year

Shore Power

All vessel calls

Shipside: \$549,360,000

120,120 tons CO_2e per year

Cargo Handling Equipment

100% Electric

Equipment: \$610,033,775

Infrastructure: \$947,290,341

77,811 tons CO₂e per year

* Total Cost: \$2,829,779,116

2050 Emission Reduction Measures

Electric Switching Locomotives

100%

\$60,000,000

39,021 tons CO_2 e per year

Hybrid Tug Assist Vessels

100%

\$38,000,000

13,936 tons CO₂e per year

Truck Efficiency Improvements

New fuel efficiency regulations

2,390 tons CO_2 e per year

* Total Cost: \$2,829,779,116

Future Emission Reduction Projects: Shore Power for Container Terminals

- Terminal 5 Seattle
 - Permit condition expects 30% implementation in first 10 years, 50% in years 10-20, and 70% thereafter
- Working with Seattle City Light to update a planning study for scoping shore power at T18 and T46.
- Working with Tacoma Public Utilities (TPU) to scope shore power in South Harbor
 - PCT, Husky, WUT, and reefers (\$7 million infrastructure improvements from TPU)

Hoteling Cost Analysis

- Hoteling cost burning fuel: \$16,483
- Hoteling cost plugging in: \$15,119 (\$13,344 without additional labor)
- Sensitive to: Cost of fuel, cost of electricity, number of ships plugging in per month
- Goal: Work with utilities to create financial incentive for the shipping lines to plug in through electricity rates

Clean CHE Program

- EDF Climate Corps Fellow, summer 2018
- Develop schemes to incentivize CHE fleet turnover without compromising performance for customers.
- Challenges are long equipment lifespans and high price point
- Focus on cost and financial sustainability
- Climate Smart

Trucks

Lessons learned from current clean truck program:

- It is difficult to convert the entire fleet at once
- There is little data on trucks serving the gateway
- There is opportunity to improve efficiency in the drayage system to reduce wait times.
 - Reduces emissions and increases number of turns for drivers

Staff developing truck study to evaluate fleet size

Focus future efforts on Electric Trucks

- Prioritize electric trucks once technology is available due to reduced emissions, reduced fuel costs, reduced O & M costs
- Diesel truck efficiency standards projected to reduce GHG emissions by 25% in new trucks by 2027, electric up to 100%

Funding

Volkswagen Mitigation Fund

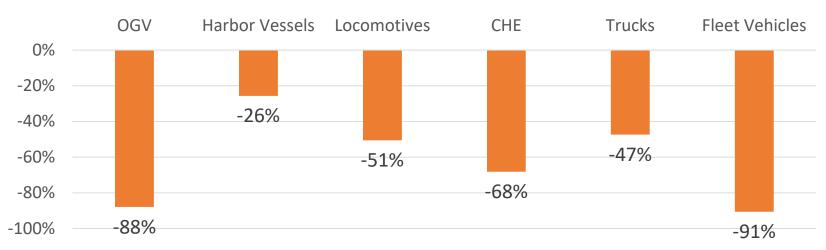
- Total fund for Washington State: \$112.7 million
- Applications in late 2018
- Funding available:
 - Up to \$50.7 million for maritime projects (e.g. shore power)
 - Up to \$50.7 million for heavy duty vehicles
 - Up to \$5.6 million for cargo-handling equipment
 - 50% DERA grant match

2018 DERA Grants

- Total fund for the U.S. is expected to be at least \$20 million
- Maximum project award for Region 10 TBD; Maximum award in 2017 was \$800,00
- Application criteria expected in Spring 2018
- Recommend applying for Clean CHE Program

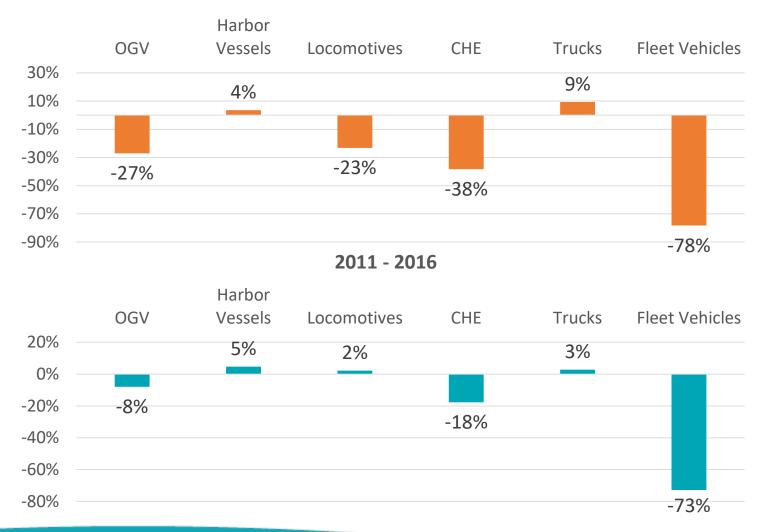
Conclusions/Next Steps

- PSEI released 3/22 outreach through community presentations ongoing
- Emissions are down, we met 2020 goals of the NWPCAS in 2016
- Still work to be done to be done to address local impacts and meet GHG targets
- Work collaboratively with industry and other ports to accelerate technology development
- Developing emission scenario evaluation tool
 - Allows staff to project the effects of implementing air quality programs
- NWPCAS Update:
 - Community outreach


Supplementary Slides


3/29/2018

DPM Emission Changes by Sector


2011 - 2016

GHG Emission Changes by Sector 2005 - 2016

Potential for Current Implementation

Terminal	Percentage of Calls Shore Power Capable	Average Calls Per Month Shore Power Capable	Expected Shore Power Capable Hoteling Hours per Month
PCT	51%	4.55	252
Husky	23%	2.38	132
WUT	15%	1.75	77

- Fraction of shore power capable vessels is expected to increase over time
- Depends on global regulations, and technology

